Mitotic and neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived from the fetal cortex.

نویسندگان

  • Masatoshi Suzuki
  • Lynda S Wright
  • Padma Marwah
  • Henry A Lardy
  • Clive N Svendsen
چکیده

Dehydroepiandrosterone (DHEA) is a neurosteroid with potential effects on neurogenesis and neuronal survival in humans. However, most studies on DHEA have been performed in rodents, and there is little direct evidence for biological effects on the human nervous system. Furthermore, the mechanism of its action is unknown. Here, we show that DHEA significantly increased the growth rates of human neural stem cells derived from the fetal cortex and grown with both epidermal growth factor (EGF) and leukemia inhibitory factor (LIF). However, it had no effect on cultures grown in either factor alone, suggesting a specific action on the EGF/LIF-responsive cell. Precursors of DHEA such as pregnenolone or six of its major metabolites, had no significant effect on proliferation rates. DHEA did not alter the small number (<3%) of newly formed neuroblasts or the large number (>95%) of nestin-positive precursors. However, the number of glial fibrillary acidic protein-positive cells, its mRNA, and protein were significantly increased by DHEA. We found both N-methyl-d-aspartate and sigma 1 antagonists, but not GABA antagonists, could completely eliminate the effects of DHEA on stem cell proliferation. Finally we asked whether the EGF/LIF/DHEA-responsive stem cells had an increased potential for neurogenesis and found a 29% increase in neuronal production when compared to cultures grown in EGF/LIF alone. Together these data suggest that DHEA is involved in the maintenance and division of human neural stem cells. Given the wide availability of this neurosteroid, this finding has important implications for future use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro

Objective(s):Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction med...

متن کامل

Dehydroepiandroesteron increased proliferation of neural progenitor cells derived from p19 embryonal carcinoma stem cells.

Introduction: The p19 line of embryonal carcinoma cells develops into neurons, astroglia and fibroblasts after aggregation and exposure to retinoic acid (RA). Dehydroepiandroesteron (DHEA) is a neurosteroid, can increase proliferation of human neural stem cell (NSC) and positively regulated the number of neurons produced. This study was initiated to assess the effect of DHEA on neural progenito...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

The Effect of Rosmarinic Acid in Neural Differentiation of Wartons Jelly-derived Mesenchymal Stem Cells in Two Dimensional and Three Dimensional Cultures using Chitosan-based Hydrogel

Numerous studies have shown the positive effects of rosmarinic acid on the nervous system. Rosmarinic acid as a herbal compound with anti-inflammatory effects can prevent the destructive effect of inflammation on the nervous system. Furthermore, various studies have emphasized the advantages of three dimensional (3D) culture over the two dimensional (2D) culture of cells. In this study, thermos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 9  شماره 

صفحات  -

تاریخ انتشار 2004